摘要:工程测量是一门研究各类工程建设在规划、设计、施工阶段以及运行管理全过程、全方位测量工作的科学技术,是一门应用测量学科,是多专业测绘的练台学科。测量技术对于水利水电工程的勘测、施工以及竣工验收起着至关重要的作用,而GPS技术已经被广泛地应用于各个领域,尤其在水利工程测量中的应用前景非常广阔。笔者根据GPS RTK测量技术及原理;概括分析水利水电工程测量技术的现状和发展趋势。
关键词:水利工程;测量技术;发展现状
Abstract: The measurement techniques for water conservancy and hydropower engineering survey, construction and completion acceptance plays a vital role, and the GPS technology has been widely applied in various fields, especially in water conservancy engineering measurement technology and its application prospect is very broad. This paper according to the GPS RTK measurement technology and principle; analyzes water conservancy and hydropower engineering survey technology present situation and trend of development.
Key words: hydraulic engineering; measuring techniques; development status
中图分类号:TV5文献标识码: A 文章编号:2095-2104(2012)06-0020-02
一、水利工程中应用GPS RTK测量技术
1、控制点加密的测量
在首级控制网的基础上,为满足地形图及断面等测量的需要,必须进行加密控制点的测量。而水利水电工程多位于偏远地区,已知高等级控制点较少,常规的控制测量方法是测距仪导线,测量精度受到很多条件限制,且工作量大。而用GPS RTK加密测量控制点则很简单,只需在测区10km范围内有3个以上且包含测区的高等级测量控制点即可,操作简单方便,平均每天可测量30~40个加密控制点,效率较高。
2、水下地形测量
水利工程测量最难的是水下地形测量,水下地形复杂,作业条件差,而水下地形资料的准确性对水利工程建设十分重要。传统水下地形测量方法大多采用经纬仪交汇或全站仪配合测深仪,其缺点是:精度不高,测区范围有限,工作量大,人员配置多等。随着GPS 测量技术在测量中的空前发展,水下地形测量也较多地采用GPS RTK技术,主要设备有:双频Trimble GPS 5700 RTK,中海达数字单(双)频测深仪,海洋测量软件。进行GPS RTK水下地形测量的步骤是:将GPS、测深仪和笔记本电脑连接成一体,导航软件对测量船进行定位,并指导测量船在指定测量断面上航行,GPS和测深仪将实时测得数据导入笔记本电脑,由海洋测量软件处理生成水下地形图或导出*.Dat数据,再由成图软件绘制水下地形图。从几年测量结果来看,GPS在水下地形测量的应用,大大提高了测量的精度,减少了工作量,缩短了工作日,并且输出的数字化的水下地形图为今后地理信息系统(GIS)的建立和管理创造了有利的条件。
3、施工放样测量
利用RTK随机软件中放样的功能进行点、直线、曲线放样功能,进行施工放样测量。输入设计好的已知坐标作为参考点和目标点,流动站实地所在位置的坐标作为修正点,电子手簿屏幕上的图形显示出实地待定点相对于目标点所偏移的距离,按照指示移动流动站,直到满足所要求的精度。同样方法可以用来复样及检查验收。
4、数字化地形图测量
利用RTK快速定位和实时得到坐标结果的特点,在一定的测量环境中可以进行地形测量。地形点的测量可以在数据采集的功能下进行,也可以根据现场地形的实际情况进行测量设定,采集完的地形点经过成图处理,生成数字化管道地形图。地形点的采集可以单人作业,极大地节约了人力和时间。
二、水利水电工程测量技术的现状和发展趋势
1、变形监测
变形监测又称变形测量,是对变形体进行测量,确定其空间位置及内部形态的变化特征。水利水电工程的变形监测主要包括基准网测量、工作基点测量、变形体变形监测、监测资料分析等内容,目前常用的变形监测方法主要有大地测量法、基准线测量法以及液体静力水准测量方法等。
(1)大地测量法。大地测量方法是变形监测的经典方法,可完成变形监测基准网测量、工作基点测量、变形体变形监测等工作,测量设备主要有电子水准仪、精密全站仪,测量方法包括传统的三角测量、几何水准测量、交会测量和现代的边角测量、三角高程测量等方法。大地测量方法利用常规大地测量仪器,理论方法成熟,数据可靠,观测费用较低,但观测时间长,劳动强度高,横度易受观测条件影响,自动化和智能化程度较低。
(2)基准线测量法。基准线法是水平位移变形监侧的常用方法,土石坝、重力坝、支墩坝等直线形大坝的坝体、坝基一般采用引张线法、真空激光准直法和垂线法观测,若坝体较短可采用视准线法、大气激光准直法观测;拱坝坝体坝基主要采用垂线法或大地测量法观测;近坝区岩体、高边坡、滑坡体水平位移监测主要采用大地测量法、视准线法和垂线法。
视准线法的优点是所用设备普通,操作简便,费用少,但受照准精度、大气折光等多种因素影响,操作误差不易控制,精度会受到明显的影响。近年来采用较少。引张线法是一种广泛应用的大坝水平位移监测主要方法,具有设备简单、测量方便、速度快、精度高、成本低等特点。引张线读数仪由早期人工测读引张线仪发展到目前的步进电机光电跟踪式引张线仪、电容感应式引张线仪、CCD式引张线仪以及电磁感应式引张线仪,基本实现了实时自动化观测。对于短距离引张线,取消了系统中的浮托装置,提高引张线的综合精度,简化引张线的观测程序,可实现完全自动化观测。垂线包括正垂线和倒垂线两种形式,是水利水电工程水平位移变形监测的主要方法。正垂线—般采用“—线多站式”,可用于水工建筑物各高程面处的水平位移监测、挠度观测和倾斜测量等;倒垂线—般要求深入稳定的基岩内,大多用于岩层错动监测、挠度监测,或用作水平位移的基准点监测。垂线监测由传统人工读数的垂线坐标仪发展到自动化观测的遥测垂线坐标仪。
(3)液体静力水准测量方法。垂直位移监测技术主要有水准测量、三角高程测量、液体静力水准测量技术,目前发展最快的是液体静力水准测量技术。液体静力水准测量系统特别适用于坝体廊道内高程观测及高程传递,它通过各种类型的传感器测量容器的液面高度,可同时获取数十乃至数百个监测点的高程,具有高精度、遥测、自动化、可移动和持续测量等特点。两容器间的距离可达数十公里,如用于跨河与跨海峡的水准测量;通过一种压力传感器,允许两容器之间的高差从过去的数厘米达到数米。
2、水下地形测量技术
传统的水下地形测量采用一般多以经纬仪、电磁波测距仪及标尺、标杆为主要工具,用断面法或极坐标法及交会法定位,用测深杆和测深锤来采集水深数据,这种方法存在作业效率低,误差大等诸多缺点,近来已经很少被采用。近年来随着卫星定位技术的发展,DGPS、GPS RTK及CORS系统配合多波束测深仪进行水下地形测量得到了广泛的应用。DGPS(差分全球定位系统)是以某已知点作为基准点,基准点的GPS接收机连续接收卫星信号,并与已知点的位置进行比较,确定当时误差的伪距修正值,将这些修正值通过无线电台接收,用户接收机接收修正值来实时校正GPS信号,它具有全天侯、实时连续、高精度等特点。目前GPS RTK及CORS系统定位已达到厘米级的定位精度,并且能够做到实时无验潮测量。以上几种定位技术进行水下地形测量与岸上基准点交会法、极坐标法等定位技术相比。具有极大的优势,特别是较大面积的水下地形测量,可以大大缩短工作周期,减轻劳动强度。
3、数字地形测绘技术
随着全站仪和计算机技术的普及应用,形成了多种大比例尺地形图的数字测绘方法,开发出具有自主知识版权的优秀数字成图软件,采用三维测绘技术,不仅可满足地形图和专业图测绘成图,还可进行GIS前端数据采集与更新。数字化测绘技术作业模式主要采用电子平板模式、数字测记模式和数字摄影测量模式(含数字近景摄影测量模式)。
三、总结
近年来,我国水利水电工程测量研究投入增多,发展很快,进步很大,取得了显著成绩; 令人可喜的是,随着计算机技术的进—步发展,以及GPS、RS、GIS、3S集成技术等测绘新技术以及数字化测绘、地面测量等先进技术设备的应用,水利水电工程测量方法和手段必将不断更新换代,服务领域也将不断拓宽。未来的水利水电工程测量技术定会向着测量数据采集和处理的自动化、实时化、数字化,测量数据管理的科学化、标准化、规格化和测量数据传播与应用的网络化、多样化、社会化的方向发展。
下一篇:给排水工程质量管理分析