您现在的位置是:首页矿业论文

测井方法与技术发展研究

发布时间:2012-12-08 09:28:44更新时间:2012-12-08 09:31:00 1

摘要:测井方法众多其中电、声、放射性是三种基本方法。特殊方法(如电缆地层测试、地层倾角测井、成像测井、核磁共振测井),其他形式如随钻测井。

关键词:测井方法 测井技术 发展

一、概述

测井方法是许多应用地球物理方法(包括重、磁、电、震、测井)中的一种,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性测量地球物理参数的方法。可以简单的认为是把地面上的勘探方法移动到了井内,这主要是由于单纯的在地面做勘探具有它的局限性,比如地面电法勘探中,虽然能得到电阻率曲线然后综合分析,但是却是地下勘探体积内的电阻率的综合反映,并不能得到地层的真电阻率,而测井技术中的电阻率却可以反映真电阻率。而且很多其他地球物理方法勘探完之后都会合理的布置井眼用以验证所测资料的准确性。

目前测井技术主要应用于煤田的勘探、石油的勘探与开发等,随着科技的发展和地质勘探的要求,测井的方法也在不断创新,有电阻率测井、电化学活动性测井、低频电磁法测井、声测井、放射性测井(密度测井、自然伽玛测井、伽玛-伽玛测井、X射线荧光测井、中子测井)等,最近发展起来的测井方法有核磁共振测井、声波成像测井、井间电磁成像测井、电阻率成像测井、多极子声波测井、高分辨率感应测井等。

二、 测井新技术

(一)电阻率测井技术

1高分辨率阵列感应测井哈里伯顿的HRAI-X由1个发射器和6个子阵列接收器组成,每个子阵列有1对接收器(主接收器和补偿接收器)。线圈间距选择上确保子阵列接收器的固有探测深度接近设计的径向探测深度,所有子阵列接收器均位于一侧,具有5个径向探测深度和3个工作频率。除了感应测量外,还采集自然电位、泥浆电阻率和探头温度。

2电阻率成像测井把由岩性、物性变化以及裂缝、孔洞、层理等引起的电阻率的变化转化为伪色度,直观看到地层的岩性及几何界面的变化,识别岩性、孔洞、裂缝等。电阻率成像有FMI、AIT及ARI等。斯伦贝谢的FMI有四个臂,每个臂上有一个主极板和一个折页极板,通过对单一发射线圈供三种不同频率交流使其在周围的介质中产生电磁场,用共用一个发射线圈的8对接收线圈检测感应电流,从而可以求出介质的电导率。ARI是斯伦贝谢基于侧向测井技术推出的,可以有效的进行薄层、裂缝、储层饱和度等地层评价。

3三分量感应测井三分量感应用于电性各向异性地层测井,Bak-erAtlas的三维探路者3DE×,用三对相互正交的发射一接收线圈对,采集5个磁场分量Hxx、Hw、Hzz、Hxy、HXZo这些信息可导出地层的水平电阻率《Rh》和垂直电阻率《Rv》,从而可描述地层电阻率各向异性。斯伦贝谢的多分量感应测井仪有一个三轴发射器和两个三轴接收器,每个线圈系都含有一个常规的z轴线圈和两个横向线圈,形成正交线圈系。

(二)声波测井技术声波测量能揭示许多储层与井眼特性,可以用来推导原始和次生孔隙度、渗透率、岩性、孔隙压力、各向异性、流体类型、应力与裂缝的方位等。声成像测井是换能器发射超声窄脉冲,扫描井壁并接收回波信号,采用计算图像处理技术,将换能器接受的信号数字化、预处理及图像处理转换成像。斯伦贝谢的SonicScanner将长源距与井眼补偿短源距相结合。在6英尺的接收器阵列上有13个轴向接收点,每个接收点有个以45。间隔绕仪器放置的8个接收器,仪器总计有104个传感器,在接收器阵列的两端各有一个单极发射器,另一个单极发射器和两个正交定向偶极发射器位于仪器下部较远处,可接收在径向、周向和轴向上纵波和横波慢度。

(三)核磁测井技术核磁共振是磁场中的原子核对电磁波的一种响应,处于热平衡的自旋系统,在外磁场的作用下磁化矢量偏离静磁场方向,外磁场作用完后,磁化矢量试图从非平衡状态恢复到平衡状态,恢复到平衡态的过程叫做驰豫。核磁共振NMR信号的驰豫时间与氢核所处的周围环境密切相关,水的纵向恢复时间比烃快得多。根据核磁共振特性间的差异指示含氢密度的高低来识别油层。共振测井仪主要有哈里伯顿和阿特拉斯采用NUMAR专利技术推出的MRIL、斯伦贝谢的CMR及俄罗斯的大地磁场型MK923。

(四)电缆地层测试技术斯伦贝谢的RFT及MDT在油气钻探过程中对地层压力及流体进行测试,RFT每次下井只获取2个样品,但不知道是什么样的样品。只是取样前,仪器中设有预测试功能,取样能力很有限。MDT具有流体动态实时监测功能、地层压力测量、地层流体性质分析、地层流体取样及地层渗透率估算等,通过流体压力剖面的预测,可以在勘探初期确定气、油、水界面,研究油藏类型及其油藏性质,结合其他测井资料进行储层产能预测。

(五)随钻测井技术随钻测井仪帮助作业者进行重要的钻井决策以及用于确定井眼周围的应力状态,提供地质导向,在完井和增产作业中用于地层评价。随钻测井数据传输有泥浆脉冲遥测、电磁传输速率、钻杆传输及光纤遥测技术,泥浆脉冲遥测是普遍使用的一种数据传输方式为4-16bit,s:电磁传输与泥浆脉冲传输速率相当是双向传输的,不需要泥浆循环,有精确钻井康谱乐公司的EMMwD系统、斯伦贝谢的E脉冲电磁传输系统,通过钻杆来传输声波或地震信号达到100bit/s,不需要泥浆循环:光纤遥测技术传输速率1Mbit,S。

(六)过套管测井技术现代测井技术的发展可以在套管井中确定地层参数,在油藏动态描述中,国外近几年主要采用脉冲中子仪、过套管地层测试器、过套管地层电阻率及永久监测技术。过套管电阻率测井、偶极横波成像测井、过套管地层测试器和脉冲中子可以提供下套管后的地层孔隙度监测流体界面与饱和度及压力变化及优化完并设计和射孔作业、漏失油气层的评价、流体界面的移动、饱和度与压力的变化和衰竭及注入剖面等。斯伦贝谢的过套管油藏评价仪有C/O、RST、DSI及CHDT。

(七)井下永久传感器永久井下监测可以为生产决策实时提供有价值的信息,无须井下作业,还可用于井间成像,有井间电阻率成像及井间地震成像两类,可以监测地下流体《油气、蒸汽、水》的分布,井下永久传感器测得的资料来控制井下的一些阀,以封闭出水层位,光纤温度传感器准确度1℃,分辨率0.1℃。永久井下光纤3分量地震测量具有高灵敏度和方向性,能产生高精度空间图象,不仅能提供近井眼图象,而且能提供井眼周围地层图象,能经受恶劣的环境条件(温度175℃,压力100MPa),分布式光纤温度传感器IDTS)可以很高精度和分辨率获得井眼中温度分布,用于生产和注入剖面监测,为生产决策提供有价值的数据。

三 结束语

地球物理测井是应用地球物理方法划分钻孔剖面、评价地层,进而解决某些地质问题的一门技术科学,是地质勘探和工程勘探的重要手段。在具体施工的过程中,我们要根据不同的地区的特性,利用多种测井方法的原理和特点,配合有效的测井方法来达到勘探的目的。


转载请注明来自:http://www.yueqikan.com/kuangyelw/18809.html