摘要:预防性试验和绝缘诊断是电力设备运行和维护工作中一个重要环节,是保证电力设备安全运行的有效手段之一。本文阐述电气设备的预防性试验和绝缘诊断,并对预防性试验的分类,并对绝缘诊断的方法及预防性试验的设备、仪器进行分析和探讨。
关键字:电气设备 试验 诊断
电气设备在运行条件下,其绝缘不但长期处于工作电压下,而且会受到短时作用的过电压,例如由雷电引起的过电压和由于电力系统中操作或事故引起的过电压。所以绝缘必须耐受工作电压的长期作用、耐受可能出现的过电压,才能保证电气设备的工作可靠性。要做到这一点,除了要设法降低和限制过电压,还要保证和提高绝缘的耐受电压。为了检验绝缘是否具有应有的耐受电压水平,必须按电气设备预防性试验标准对绝缘进行试验。
1 预防性试验分类
1 . 1 按试验范围分类
1.1.1 定期试验
这是为了及时发现设备潜在的缺陷或隐患,每隔一定时间对设备定期进行的试验。例如油中溶解气体色谱分析、绕组直流电阻、绝缘电阻、介质损耗因数、直流泄漏、直流耐压、交流耐压、绝缘油试验等。
1.1.2 大修试验
指大修时或大修后做的检查试验项目。除定期试验项目外,还需作:穿心螺栓绝缘电阻、局部放电、油箱密封试验、断路器分合闸时间和速度、电动机定转子间隙测量等试验,其中有些是机械方面的检查项目。
1.1.3 查明故障试验
指定期试验或大修试验时,发现试验结果有疑问或异常,需要进一步查明故障性质或确定故障位置时进行的一些试验,或称诊断试验。例如:空载电流、短路阻抗、绕组频率响应、振动、绝缘油含水量和油介损、压力释放器、氧化锌避雷器工频参考电压试验等。
1.1.4 预知性试验
这是为了鉴定设备绝缘的寿命,搞清被试设备的绝缘是否还能继续使用一段时间,或者是否需要在近期安排更换而进行的试验,例如电动机或调相机定子绕组绝缘老化鉴定、变压器绝缘纸(板)聚合度、油中糠醛含量试验等。
1 . 2 按试验性质分类
非破坏性试验或称绝缘特性试验。使用较低的试验电压或用不会对被试设备绝缘产生累积损伤效应的方法,根据绝缘介质中发生的各种物理过程( 极化、吸收、电导等) ,测量绝缘的各种参数( 绝缘电阻和吸收比或极化指数、泄漏电流、介质损耗角正切等) ,以及与极化吸收过程有关的特性( 主要表现为电阻—时间的变化规律)和绝缘冷却媒质的一系列其他特性( 化学成分、油中水分及气体含量等) ,从而判断设备的绝缘能力,及时发现可能的劣化现象,还可以通过历次试验积累的数据,综合分析绝缘特性随时间的变化趋势,从而能显著提高对被试设备内部绝缘缺陷的判断,但此类方法比较间接,不容易作出准确的判断。破坏性试验或称绝缘耐压试验,是在被试设备上施加高于设备工作电压的试验电压,以求揭示危险性较大的集中性缺陷的存在,并直接检验被试设备的绝缘耐压水平或裕度。耐压试验时,对被试设备绝缘可靠性的考验比较直接和严格,缺点是试验可能给被试设备的绝缘造成一定的损伤,并会导致被试设备的绝缘能力下降和可能恢复的缺陷在试验过程中发展为不可逆转的击穿。
2 绝缘诊断
传统的基本绝缘试验项目包括绝缘电阻、直流泄漏电流、介损、直流耐压和交流耐压试验。通过绝缘性能试验,可定期检测电气设备绝缘性能,预测绝缘状况,推断绝缘老化进程、绝缘油劣化等内部薄弱环节,发现现役设备的隐患,安排消除缺陷的维修计划等,以保证设备的安全运行。
绝缘电阻试验项目中,发现变压器吸收比试验不够完善,不少新出厂或检修烘
干后容量较大的变压器,绝缘电阻绝对值较高,但吸收比(R60“R15”)偏小,疑为不合格。若采用极化指数试验(R600“R60”)后,就易于作出明确判断。从介质理论来分析,吸收比试验时间短(仅60s),复合介质中的极化过程刚处于开始阶段,尚不能全面反映绝缘的真实面貌,极化指数试验时间为6 0 0 s ,介质极化过程虽未完成,但已初步接近基本格局,故能较准确地反映绝缘受潮情况。从技术发展历史来看,工业发达国家从2 0 世纪4 0 年代至今都一直采用极化指数试验,不采用吸收比试验。改进在电场干扰下测量设备介损时的抗
干扰方法。如采用电子移相抵消法和异频法等新方法,且操作方便,提高了工作效率,但另一种采用电源倒向和自动计算的方法在干扰较大时,误差仍较大。交流耐压试验中,对大容量试品( 如S F - 6 组合电器、大型起重机械中的电动机等) 采用工频串联谐振方法的日渐增多。变压器的定期试验项目首先应是油中溶解气体的色谱分析。绝大部分的变压器缺陷都是从色谱分析发现的。在需要时做变压器油中含水量、油中含糠醛量和绝缘纸板聚合度试验,后2 项试验的目的在于决定是否需要更换绝缘。氧化锌避雷器如果直流电压试验或交流阻性电流测试不合格,应做交流工频参考电压试验,以作出进一步判断。
3 试验设备与测量仪器
近年来国内生产的测量仪器和试验设备有了较多的改进,为质量技术检验逐步走向数字化和微机化,提高了测量精度和工作效率做了很好的准备。
3 . 1 高压直流电压试验设备更趋完善
生产了多种供大容量试品交流耐压试验用的串联谐振试验装置,功率和电压等级均有提高;测量大型电力变压器绕组直流电阻的仪器,解决了五柱式三角绕组的测量问题,采用微机控制,提高了稳流性能,显著缩短了测量时间。出现了数字兆欧表,能自动计时,并能显示吸收比值和极化指数值,兼有自动放电功能。
3 . 2 测量仪表采用微机控制,显示仪表数字化,使仪表读数方便、准确、易于判别数字存储电子示波器的应用,使显示波形和测量值实现离线分析,并能适时打印,增强了测试和分析被试设备的手段。
3 . 3 在线监测仪器仪表在吸收、消化、移植国外先进技术的基础上,开发和研制出部分具有国际水准的电气设备在线监测仪器仪表,例如变压器油色谱在线监测装置,变压器在线局部放电监测装置,断路器微机检测装置,变电所电瓷内过电压波形在线监测仪,设备绝缘在线监测装置,电瓷表面局部电导率测试仪,电缆绝缘在线监测装置,氧化锌避雷器在线自动测试仪,红外线接触电阻测量仪,绝缘油介质强度自动测试器等。
电气设备的在线监测,由于是在运行电压下连续进行的,能够比停电测试更有
效和及时地发现设备早期缺陷。目前,世界上发达国家在这方面已取得了一定的成效。我国起步较晚,能达到实用化的在线监测项目并不多,已商业化的监测装置就更少。在运行的电气设备上推广应用在线监测装置,能及时检测出设备初始阶段的缺陷,及时安排设备检修,可避免事故的发生,从而显著地提高供电的可靠性。比如电梯、起重机械的适时监测就显得尤为重要。
4 电气设备绝缘寿命预测
电气设备寿命预测主要是绝缘寿命预测, 它是长期以来人们一直在研究的课题。该项研究可分为2 类,一是针对各种绝缘材料;二是针对实际设备的绝缘系统。单纯绝缘材料的寿命模型不能直接运用于实际设备,但对实际绝缘系统的结构布置、材料选择及老化评估有重要的参考价值。超过设计年限而继续运行的重要设备如电动机、变压器等的绝缘寿命预测技术有着显著的经济意义。“超寿命”设备继续运行的前提是必须可靠地估计其残余寿命。如变压器寿命不决定于已运行的年数而应由其绝缘实际状况决定是否能继续使用,并提出了“绝缘年龄”的概念,以油中C O 、C O 2 、糠醛并结合纸绝缘的抗拉强度和聚合度测量来估算。随着“绝缘年龄”增加,设备运行的可靠性将降低;当可靠性低于某一预定值时,认为绝缘寿命已尽,设备即退出运行或进行相应的处理。一般认为纸的抗拉强度下降到5 0 % 时,绝缘寿命已尽。总的说来,目前这方面的研究并不完善,需要继续开展大量的工作。纵观国内外电气检验监督部门绝缘诊断和预防性试验工作的进展过程,从试验项目和试验周期来看,凡是一个国家生产的电气设备产品质量较好的,运行中注意维护,运行可靠性较高的,这个国家规定的试验项目就较少,试验周期也较长,有的甚至对某些设备不做试验。目前我国电气设备质量和运行维护水平正处于逐步提高的过程,新颁发实施的DLT596 — 1996《电气设备预防性试验规程》中,已经适当精简了部分试验项目,部分设备的试验周期也有所延长,但试验项目还是偏多,周期也较短,有待进一步提高。
下一篇:电力系统继电保护技术的现状与发展